Elliptic curves#
Conductor#
How do you compute the conductor of an elliptic curve (over
Once you define an elliptic curve EllipticCurve
command, the conductor is one of several “methods”
associated to
sage: E = EllipticCurve([1,2,3,4,5])
sage: E
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over
Rational Field
sage: E.conductor()
10351
E = EllipticCurve([1,2,3,4,5]) E E.conductor()
>>> from sage.all import *
>>> E = EllipticCurve([Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)])
>>> E
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over
Rational Field
>>> E.conductor()
10351
-invariant#
How do you compute the
Other methods associated to the EllipticCurve
class are
j_invariant
, discriminant
, and weierstrass_model
. Here is
an example of their syntax.
sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: E.j_invariant()
-122023936/161051
sage: E.short_weierstrass_model()
Elliptic Curve defined by y^2 = x^3 - 13392*x - 1080432 over Rational Field
sage: E.discriminant()
-161051
sage: E = EllipticCurve(GF(5),[0, -1, 1, -10, -20])
sage: E.short_weierstrass_model()
Elliptic Curve defined by y^2 = x^3 + 3*x + 3 over Finite Field of size 5
sage: E.j_invariant()
4
E = EllipticCurve([0, -1, 1, -10, -20]) E E.j_invariant() E.short_weierstrass_model() E.discriminant() E = EllipticCurve(GF(5),[0, -1, 1, -10, -20]) E.short_weierstrass_model() E.j_invariant()
>>> from sage.all import *
>>> E = EllipticCurve([Integer(0), -Integer(1), Integer(1), -Integer(10), -Integer(20)])
>>> E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
>>> E.j_invariant()
-122023936/161051
>>> E.short_weierstrass_model()
Elliptic Curve defined by y^2 = x^3 - 13392*x - 1080432 over Rational Field
>>> E.discriminant()
-161051
>>> E = EllipticCurve(GF(Integer(5)),[Integer(0), -Integer(1), Integer(1), -Integer(10), -Integer(20)])
>>> E.short_weierstrass_model()
Elliptic Curve defined by y^2 = x^3 + 3*x + 3 over Finite Field of size 5
>>> E.j_invariant()
4
The -rational points on E#
How do you compute the number of points of an elliptic curve over a finite field?
Given an elliptic curve defined over
sage: E = EllipticCurve(GF(5),[0, -1, 1, -10, -20])
sage: E
Elliptic Curve defined by y^2 + y = x^3 + 4*x^2 over Finite Field of size 5
sage: E.points()
[(0 : 1 : 0), (0 : 0 : 1), (0 : 4 : 1), (1 : 0 : 1), (1 : 4 : 1)]
sage: E.cardinality()
5
sage: G = E.abelian_group()
sage: G
Additive abelian group isomorphic to Z/5 embedded in Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 + 4*x^2 over Finite Field of size 5
sage: G.permutation_group()
Permutation Group with generators [(1,2,3,4,5)]
E = EllipticCurve(GF(5),[0, -1, 1, -10, -20]) E E.points() E.cardinality() G = E.abelian_group() G G.permutation_group()
>>> from sage.all import *
>>> E = EllipticCurve(GF(Integer(5)),[Integer(0), -Integer(1), Integer(1), -Integer(10), -Integer(20)])
>>> E
Elliptic Curve defined by y^2 + y = x^3 + 4*x^2 over Finite Field of size 5
>>> E.points()
[(0 : 1 : 0), (0 : 0 : 1), (0 : 4 : 1), (1 : 0 : 1), (1 : 4 : 1)]
>>> E.cardinality()
5
>>> G = E.abelian_group()
>>> G
Additive abelian group isomorphic to Z/5 embedded in Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 + 4*x^2 over Finite Field of size 5
>>> G.permutation_group()
Permutation Group with generators [(1,2,3,4,5)]
Modular form associated to an elliptic curve over #
Let
sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: E.conductor()
11
sage: E.anlist(20)
[0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
sage: E.analytic_rank()
0
E = EllipticCurve([0, -1, 1, -10, -20]) E E.conductor() E.anlist(20) E.analytic_rank()
>>> from sage.all import *
>>> E = EllipticCurve([Integer(0), -Integer(1), Integer(1), -Integer(10), -Integer(20)])
>>> E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
>>> E.conductor()
11
>>> E.anlist(Integer(20))
[0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
>>> E.analytic_rank()
0